Multi-Scale Fully Convolutional Network-Based Semantic Segmentation for Mobile Robot Navigation

نویسندگان

چکیده

In computer vision and mobile robotics, autonomous navigation is crucial. It enables the robot to navigate its environment, which consists primarily of obstacles moving objects. Robot employing impediment detections, such as walls pillars, not only essential but also challenging due real-world complications. This study provides a real-time solution problem obtaining hallway scenes from an exclusive image. The authors predict dense scene using multi-scale fully convolutional network (FCN). output image with pixel-by-pixel predictions that can be used for various strategies. addition, method comparing computational cost precision FCN architectures VGG-16 introduced. binary semantic segmentation optimal obstacle avoidance robots are two areas in our outperforms methods competing works. successfully apply perspective correction segmented order construct frontal view general area, identifies available area. strategy comprised collision-free path planning, reasonable processing time, smooth steering low angle changes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-Scale Convolutional Architecture for Semantic Segmentation

Advances in 3D sensing technologies have made the availability of RGB and Depth information easier than earlier which can greatly assist in the semantic segmentation of 2D scenes. There are many works in literature that perform semantic segmentation in such scenes, but few relates to the environment that possesses a high degree of clutter in general e.g. indoor scenes. In this paper, we explore...

متن کامل

Training Bit Fully Convolutional Network for Fast Semantic Segmentation

Fully convolutional neural networks give accurate, per-pixel prediction for input images and have applications like semantic segmentation. However, a typical FCN usually requires lots of floating point computation and large run-time memory, which effectively limits its usability. We propose a method to train Bit Fully Convolution Network (BFCN), a fully convolutional neural network that has low...

متن کامل

Multi-Scale Fully Convolutional Network for Fast Face Detection

Image pyramid is a common strategy in detecting objects with different scales in an image. The computation of features at every scale of a finely-sampled image pyramid is the computational bottleneck of many modern face detectors. To deal with this problem, we propose a multi-scale fully convolutional network framework for face detection. In our detector, face models at different scales are tra...

متن کامل

Maritime Semantic Labeling of Optical Remote Sensing Images with Multi-Scale Fully Convolutional Network

In current remote sensing literature, the problems of sea-land segmentation and ship detection (including in-dock ships) are investigated separately despite the high correlation between them. This inhibits joint optimization and makes the implementation of the methods highly complicated. In this paper, we propose a novel fully convolutional network to accomplish the two tasks simultaneously, in...

متن کامل

Convolutional Neural Network-Based Robot Navigation Using Uncalibrated Spherical Images †

Vision-based mobile robot navigation is a vibrant area of research with numerous algorithms having been developed, the vast majority of which either belong to the scene-oriented simultaneous localization and mapping (SLAM) or fall into the category of robot-oriented lane-detection/trajectory tracking. These methods suffer from high computational cost and require stringent labelling and calibrat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronics

سال: 2023

ISSN: ['2079-9292']

DOI: https://doi.org/10.3390/electronics12030533